Energy Reflection Symmetry of Lie-Algebraic Problems: Where the Quasiclassical and Weak Coupling Expansions Meet

نویسنده

  • M. Shifman
چکیده

We construct a class of one-dimensional Lie-algebraic problems based on sl(2) where the spectrum in the algebraic sector has a dynamical symmetry E ↔ −E. All 2j + 1 eigenfunctions in the algebraic sector are paired, and inside each pair are related to each other by a simple analytic continuation x → ix, except the zero mode appearing if j is integer. At j → ∞ the energy of the highest level in the algebraic sector can be calculated by virtue of the quasiclassical expansion, while the energy of the ground state can be calculated as a weak coupling expansion. The both series coincide identically. † On leave of absence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matching Weak Coupling and Quasiclassical Expansions for Dual Qes Problems

Certain quasi-exactly solvable systems exhibit an energy reflection property that relates the energy levels of a potential or of a pair of potentials. We investigate two sister potentials and show the existence of this energy reflection relationship between the two potentials. We establish a relationship between the lowest energy edge in the first potential using the weak coupling expansion and...

متن کامل

Duality and Self-Duality (Energy Reflection Symmetry) of Quasi-Exactly Solvable Periodic Potentials

A class of spectral problems with a hidden Lie-algebraic structure is considered. We define a duality transformation which maps the spectrum of one quasi-exactly solvable (QES) periodic potential to that of another QES periodic potential. The self-dual point of this transformation corresponds to the energy-reflection symmetry found previously for certain QES systems. The duality transformation ...

متن کامل

A Diffusion Equation with Exponential Nonlinearity Recant Developments

The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...

متن کامل

Realization of locally extended affine Lie algebras of type $A_1$

Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...

متن کامل

Lie symmetry analysis for Kawahara-KdV equations

We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998